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Quantum relaxation in open chaotic systems
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Using the supersymmetry technique, we analytically derive the recent result of Casati, Maspero, and Shepe-
lyansky[Phys. Rev. E56, R6233(1997)] according to which the quantum dynamics of open chaotic systems
follows the classical decay up to a new quantum relaxation time slg:aldm. This scale is larger than the
classical escape timg but still much smaller than the Heisenberg titpe For systems with orthogonal or
unitary symmetry the quantum decay is slower than the classical one while for the symplectic case there is an
intermediate regime in which the quantum decay is slightly faf8¥063-651X97)51012-9

PACS numbd(s): 05.45+4b, 05.60:+w, 72.20.Dp

The classical decay probability of a generic weakly opertions[1] for the kicked rotator.
chaotic system obeys the exponential distributiBg(t) In this work, we present analytical results for a similar
«e~ e where the mean escape tirhecharacterizes the ef- model by mapping it onto the supersymmetric nonlinear
fective coupling to the outside. Motivated by recent experi-model[12], which is possible due to recent progress of Alt-
ments on mesoscopic cavities or microwave billiards therdand and Zirnbaug14] for this type of system. The-model
has been renewed interest in the problemgaantum life in the zero-dimensional limit also applies to the case of a
times[1-8]. For example, the quantum properties of “cha- chaotic cavity coupled to external ledd%]. We clearly con-
otic” maps with absorption[1,2] were investigated. Re- firm the findings of Casatt al. that the new time scalg, is
cently, also analytical results for the statistical distributionsindeed highly relevant for the problem and, additionally, we
of the complex poles of the scattering matf&5] or of the  find at t~t, qualitatively different quantum effects for the
eigenvalues of the Wigner-Smith matrix of time deld$$ three symmetry classes of random matrix thgd§j that are
were found for the generic problem of chaotic scattering. characterized by the indeg&= 1 for the orthogonal cassys-

The problem of current relaxation in disordered metalstems with time reversal symmetry and no spin mijing= 2
which is similar to the quantum decay of an initially local- for the unitary casdbroken time reversal symmejryand
ized wave packet inside a chaotic cavity or a disordered reg=4 for the symplectic caséime reversal symmetry and
gion, has been investigated by different analytical ap-strong spin mixing This result supports the interpretation
proache§9-11] in the framework of the nonlinear model  that the effect of weak localizatiofor antilocalization for
(replica or supersymmetry variaft2]). In these works it B=4) can also be observed in open systems with absorption.
was shown that the classical exponential decay is strongly We consider the quantum dynamig(t+1))=S|(t))
supressed by quantum effects for time scales larger than thsf a generalized random phase kicked rotator model with the
Heisenberg time,, giving rise to a log-normal distribution time evolution operator introduced [&,1]
of relaxation times. Muzykantskii and KhmelnitskilLO]
demonstrated that this is due to a nontrivial saddle point of
the o model. For the case of open one-dimensional geom- Sl.l.:ei,u|<||e—iV(0)|T>ei,u,T, (1)
etries they obtained fort>t, the behavior P(t)
~exfd —gln?(t/t,,)] whereg=t, /t;>1 is the conductanogn
units of e%/h). This result has an important relation to the —~ .
probability to find a “nearly localized state” in a normally wheIeI,'I are t'he guantum numbers (.)f angular momen-
metallic sample[10]. Also the quantum time evolution of tum” being conjugated tithe angte As in Refs[2,1] thel
open chaotic cavities was studigti3] giving a power law  Space is finite:— N/2s|,ll <N/2 introqucing effective ab-
decay fort>t,/min{T;} where O<T;<1 are the transmis- SOrption at the boundaries. We consider random phases
sion coefficients of the barrier by which the cavity is coupled[17] and a quite general periodic kick potentig|6) (with a
to the outside. finite number of harmonigs The different symmetry

Recently, Casati, Maspero, and Shepelyarfdfysurpris-  classes are encoded in the symmetries \if0) [18],
ingly found that for a quantum kicked rotator model with i.-e., V(0)=V(—6) for B=1 and V(6)=V(6)l,
absorption[2] significant deviations from the classical be- +=3_,0,V,(6) for B=4. Here o, are the Pauli matrices
havior already appear at an earlggrantum relaxation time andV,(6) is even(or odd for »=0 (or »=1,2,3. In the
scale 5~\/E<tH. Their argument1] is based on the following, we consider the phase averaged quantity
complex eigenvalues of the nonunitary time evolution operaP(t)=(|(0|S'|0)|?), to describe the decay of a quantum
tor being typically distributed in a narrow ring of width state initially localized at the site=0. For short time scales
E.= 1k, [2] inside the unit circle(t.> 1 is measured in units  this probability decays diffusively aB(t)=1/yDt (with dif-
of the kick period) Thent, can be identified1] as the in-  fusion constanD =(V'(6)?),>1) whereas for longer time
verse of their typical distance in the complex plane. Thisscales and large system sizegN>D) quantum localization
picture is indeed supported by numerical quantum simulaleads to the saturatioR(t) e 1/¢ with the localization length
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]

in [1]. We note that foi3=2 the functionC,(u) has only a
guadratic correction for small. The situation for3=4 is
particularly intriguing because here the quantum probability
p=1 B= is initially even below the classical value. The function
C4(u) has atuy,iy=3.03 (tq min~2.46yN/E, ) its minimum

In[P(t/N]

0 Cg(w) value 0.488 and it crosses the classical value 1 again at
60 | 100 _ucrw7.36 (tgycr~3.84\/N/EC,2). _It seems that the Ilnea_r term
10 in the f_unctlontiﬁ(u) can be viewed as a yveak-locallzatlon
correction (antilocalization for=4). In Fig. 1, we also
' | show for the OD case witfi;=1 the accurate result that is

given by more complicated integralsee below.
To derive these results, we have applied the supersym-
0 200 400 600 ¢ metric techniqud 12,15, which has recently been general-
ized[14,19 to treat random phases instead of Gaussian dis-
FIG. 1. LOgarithm Ofp(t) for the three symmetry classes with order. Repeating the Steps described in FE&Q]' we can

E¢1~0.1, N=2000 and all transmission eigenvalu€s=1. The = .
full lines are obtained from(14) for =2 or the corresponding express the Laplace transforf{w) of P(t) as a functional
integral of the type

integrals forB8=1,4. The dashed line shows the classical exponen-
tial decay and the two dotted lines f8r= 1,2 correspond to Eq2).

For B=4, Eq.(2) coincides with the full line. The inset shows the ﬁ(w)ZJ' DQ f(Q(0))e 2. (6)
functionsCg(u) given in Egs.(3)—(5).

._Here the integration is done over a field 0k8 supermatri-
§=ﬂ_D/2. Here we concenttate on thze case of a system SiZ€es Q(l), —N/2=<I=<N/2 with the nonlinear constraint
N being much smaller thafi(i.e.,te~N*/D<N=t,,) and on Q?=1 and particular symmetries for each universality class

time scaleg>t.. ; ;
i . . 12]. £(Q(0)) is a preexponential factor that depends only on
We first present and discuss our main results before wi eQ field at site 0. The action in Eq6) has the form

outline some basic steps of the approach. We find that the

first quantum corrections fag<t<tZ%* can be cast in the d . .
form L[Q]= 5 Stigy In(B(w)+iQ), (7)
E o2 g R
P t OCe_ECyltC ( c, ), E :_V’ 2 . 1_elw/2U R U
® Bl 2N “" N @ B(w)=iA——=2, Up= ° N (8)
l+e""/2U0 UO

where for the 0D limit(k=N/2 or for a chaotic cavitywe

have introduced the “generalized conductance” moments byrhe numberd=1 (2) for 3=1,2 (8=4) measures the spin
g,= v=1,2,... . Here the transmission e,genva|uesdegeneracy and the supertrace extends over an
0<T <1 descnbe the effective coupling strength of the cav-8N-dimensional super spad®.is an operator containing the

ity W|th the boundary. For the 1D limig;=g,=w?D/2N is  Q(l)-fields in its diagonal blocks antd, is a matrix with

(up to a numerical factoithe classical conductance from the elements(l|e~ IV(f’)| IY®1,. The block structure in Eq(8)

site 0 to the boundary. The universal functiadDg(u) have refers to the grading for advanced and retarded Greens func-

the form(inset of Fig. 2 tions with the matrixA having the entriest 1 (—1) in the
upper (lower diagonal block. As in[19], we expand the
(u)_f dxf dy—— 2x(1—x) action in the limit of long wavelengths and long time scales,
1 (1—x%+x%y?)? which gives£[Q]~ Lg[ Q]+ L, Q] where
X exgu(@x—(1—x2+x%y?))] 3 d (N2 _
L1olQl=~ 35 N/zdl St(D(4/Q)*+4iwQA) (9)
5 _
= —u+---
=1+u+ 6! o is the standard one-dimensionalmodel action. Here the

supertrace Str without subscript acts or 8 supermatrices.
) 1 The termLg[ Q] which was absent ifl4,19 arises from the
Ca(u)=sinh(u)/u=1+ gU2+ e (4 poundary absorption because the operatgris not unitary
due to the cutoff il space. According to this we can write
1 5 B(0)=B,+iAB, with Hermitian matrice®,; andB,. Note
Cau)=Cy(~ul)=1-su+7u Pt (5  that B, does not vanish becaus®, is not unitary.
The boundary part of the action is then determined by the
For 8=1,2 the quantum probabilit(t) is above its classi- eigenvalues &T{¥<1 of the Hermitian matrix T(*)
cal valueP(t). The criterion IfiP(t,)/Pg(ty) ]=0.1(see[1])  =A"24B,A"12 [W|th A=B2+(1+B,)?]. These eigenval-
to define the quantum relaxation time scdlg leads to  ues have the meaning of transparencies of coupling channels
ty~0.45/N/E, for B=1 andt,~1.24/N/E., for B=2.  to the outside. Their precise distribution depends on micro-
The numerical factor fog=1 is mdeed close to 0.38 found scopic details such as system size and the particular choice of
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the kick potentiaM(6). The eigenvectors with nonvanishing by their average values and omit theaverage. Thesg,

TJ(O) have typically a support on the sites close to the boundaverages are in the classical limit determined by a set of
ary and the related boundary conductarg®=3,T(®  differential equations that can be derived from the DMPK

scales like the effective bandwidth &fy: g~ (D. we €duation[26]. To determineF(Q.I) for w+0 we use the
have verified this behavior by a numeri- €XPression foro(Q,1) as an ansatz Whgre the, are now
parameters to be determined as a functiomof he w term
only modifies the equation fay, giving g;(l)= —(2/D)gf
—iw and gé(l)=(4/D)(g§—Zglgz). Omiting the details,
we mention that the explicit solutions determiréQ,l) and

1 © thus provide a closed expression Bfw) as oneQ integral
1+ > T,7AQ (100 (11). Using the standard parametrizations €@rintroduced

by Efetov[12], we can express Eql1) as an integral over

. two (B=2) or three 3=1,4) radial parameters. We can
?‘”FJ'AQ_— 2(QA+AQ) - 1_' The sum runs over all nonvan- perform the integrations fow (from the Fourier transforjn
ishing elgenvalues associated to one boundary. We note thaf, 4 or the effective variable= Str(AQ) in a saddle point
for the S-matrix approachoof Ref415,20 exactly the same  550r0ximation, which is justified fart. . Keeping the first
action is obtained wher&® are the transmission eigenval- yyo terms withg; and g, in F(Q,) we obtain our main
ues of a tunnel barri(_ar which couples a mesoscopic sample t@sult(2)—(5) for the 1D case. The situation for thel @ase
an ideal quantum wirg20]. . is much easier, here we can simply insert the given “bound-

The functional integra(6) corresponds to a path integral ary” transmission eigenvalues and perform theintegra-

spacg21,12,23. Therefore we rewrite E(q6) as

cal evaluation of T©© for the standard kicked rotator.
Therefore we can write: £g[Q]=Lg(T® Q(N/2))
+Lg(TO,Q(~ N/2)) with

. d
Lg(T@,Q)= 7 2 Str In

P(w)= f dQ f(QFAQ.N/2), (1) Pt~ f mine
t Jo

t
1+25- 2x) e L™ (14

where the functior=(Q,l) is determined by the partial dif-
ferential equatiorf21,12,23

2
¢

and the initial conditionF(Q,0)=exd —Lg(T®,Q)]. Here

(15

~ 1+ (t/N=X)T;

&|F(Q,I)=( AQ-ng StHQA) |F(Q,I) (12

) ) The corresponding expressions f8r=1,4 have a similar
Aq denotes the Laplace operator@nspacewith the precise  gi,ctyre with two integrations. The curves shown in Fig. 1

notations of Ref[23]). The general solution of Eq12) for \ere ohtained from a numerical evaluation of these integrals.
arbmary frequc_anues is an |_nvolved mathematical problemThey also lead to our principal resu)—(5) if we expand
First, we consider the solutioRo(Q,l) for the casew=0. e jogarithm in Eq(15) up to second order iff. The ex-
For this, we note that expLg(T,Q)] as a function off; and  pansion parameter here is, in principléN~t/t,,<1. How-
Q exactly coincides with the generating functi¢®.3) of  ever, one can estimate that the third order term gives a con-
Ref.[23], which was used to prove the equivalence oféhe tribution oct3/(t.t%), which has to be smaller than unity
model[21,12,23 and Fokker-Planck approa¢4—-2§ for  pecause of the exponential in Ed.4). Of course the same
quasi one-dimensional disordered wires. According to th&yiterion holds for the 1D case if we restrict ourselves to the
argumentation presented[iB3], Fo(Q,!) is exactly given by  first two momentsy; andgs.
In summary, we have found that for open chaotic systems
Fo(QJ):f dT7p(T,Hexd —La(T,Q)] (13)  the first quantum corrections to the.clas.sical relaxation pro-
cess appear at a quantum relaxation time st@ie\/m
A » o _ . with different effects for each universality clagdg. 1). This
where p(T,l) is a probability distribution of transmission gcale is determined by the second moment of transmissions
eigenvalued; , which fulfills a certain Fokker-Planck equa- eigenvaluesT; describing the effective coupling strength of
tion (known as DMPK-equation due to Dorokh¢®24], and  the injtial site with the boundary. It would be very interesting
Mello, Pereyra, Kumar[25]) with the initial condition  tg relate this finding more clearly to the physical mechanism
p(T,00=8(T—T©). p(T,l) describes the statistical trans- suggested in Ref1], according to which, is the time scale
port properties of a quasi-one-dimensional disordered wire it which the quantum discreteness of the complex eigenval-
series with a tunnel barrier with transparencTé%’. Atfirst  ues expiE;—1I'j/2) of the nonunitary time evolution operator
sight Eq.(13) seems to be more complicated due to the in-S [2] can be resolved. We emphasize that in view of the
creased number of integrations. However, in the metalliauniversalo model formulation our results apply not only to
limit, we can expand Eq(10) in powers of AQ with the the kicked rotator modell) but also to chaotic cavitiegor-
self-averaging transmission momegtsg,,ds,... asprefac-  responding to the zero-dimensional random matrix lirartd
tors. Their “guantum” fluctuations are of order unity and to quasi-one-dimensional disordered wires. In this case one
have only an effect fot=t,,. Therefore, we can replacg,  should consider the time evolution of a wave packet of plane
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waves in an energy interval of sizér, whereris the elastic the decay is then again exponential with a decay rate given
scattering time. The typical extension of a such a waveby the minimall’; [1].
packet is just the mean free path, which is in any case the Concerning the zero-dimensional limit, our res@}, (3)
smallest length scale that can be resolved by the standardfor =1 is, in principle, also contained in the exact integral
model[12]. expressions of13]. However, since the corresponding limit

Due to the almost identicat model action it is important \yas not worked out there the time scajeremained unde-
to understand the relation of our results with the approach ofgcteq. We emphasize that here ffiieare given model pa-
Ref. [10], where mainly the limitt>t, was considered. A rameters and, , might parametrically be smaller thagy, ;
recent careful analys{27] of the saddle point approach pio- i 4| T.<1. We mention that very recently Savin "and

. . . . j

neered in Refl10] indeed gives for the regimg<t<ty the  gokolov [28] independently also found the time scalein
behavior InP(t)~—(tt)[1-t/(Bgt)] confirming Eas.(2—  the frame work of the supersymmetric approach. Their re-
(5) for u>1. Furthermore, fot>t, we can state that the gyits which apply for the OD case with unitary symmetry,

log-normal behavior found if@—11] should also apply to the completely agree with our finding®) and (14).
averagedecay rate for the kicked rotator model. However,

for very long time scales one should also focus on the dis- The author acknowledges D. L. Shepelyansky and B.
tribution of the decay function because foigaven sample  Georgeot for fruitful and inspiring discussions.
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