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Quantum relaxation in open chaotic systems
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~Received 21 July 1997!

Using the supersymmetry technique, we analytically derive the recent result of Casati, Maspero, and Shepe-
lyansky@Phys. Rev. E56, R6233~1997!# according to which the quantum dynamics of open chaotic systems
follows the classical decay up to a new quantum relaxation time scaletq;AtctH. This scale is larger than the
classical escape timetc but still much smaller than the Heisenberg timetH . For systems with orthogonal or
unitary symmetry the quantum decay is slower than the classical one while for the symplectic case there is an
intermediate regime in which the quantum decay is slightly faster.@S1063-651X~97!51012-9#

PACS number~s!: 05.45.1b, 05.60.1w, 72.20.Dp
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The classical decay probability of a generic weakly op
chaotic system obeys the exponential distributionPcl(t)
}e2t/tc where the mean escape timetc characterizes the ef
fective coupling to the outside. Motivated by recent expe
ments on mesoscopic cavities or microwave billiards th
has been renewed interest in the problem ofquantum life
times@1–8#. For example, the quantum properties of ‘‘ch
otic’’ maps with absorption@1,2# were investigated. Re
cently, also analytical results for the statistical distributio
of the complex poles of the scattering matrix@3,5# or of the
eigenvalues of the Wigner-Smith matrix of time delays@6#
were found for the generic problem of chaotic scattering

The problem of current relaxation in disordered meta
which is similar to the quantum decay of an initially loca
ized wave packet inside a chaotic cavity or a disordered
gion, has been investigated by different analytical a
proaches@9–11# in the framework of the nonlinears model
~replica or supersymmetry variant@12#!. In these works it
was shown that the classical exponential decay is stron
supressed by quantum effects for time scales larger than
Heisenberg timetH giving rise to a log-normal distribution
of relaxation times. Muzykantskii and Khmelnitskii@10#
demonstrated that this is due to a nontrivial saddle poin
the s model. For the case of open one-dimensional geo
etries they obtained for t.tH the behavior P(t)
;exp@2gln2(t/tH)# whereg5tH /tc@1 is the conductance~in
units of e2/h!. This result has an important relation to th
probability to find a ‘‘nearly localized state’’ in a normall
metallic sample@10#. Also the quantum time evolution o
open chaotic cavities was studied@13# giving a power law
decay fort@tH /min$Tj% where 0<Tj<1 are the transmis
sion coefficients of the barrier by which the cavity is coupl
to the outside.

Recently, Casati, Maspero, and Shepelyansky@1# surpris-
ingly found that for a quantum kicked rotator model wi
absorption@2# significant deviations from the classical b
havior already appear at an earlierquantum relaxation time
scale tq;AtctH!tH . Their argument@1# is based on the
complex eigenvalues of the nonunitary time evolution ope
tor being typically distributed in a narrow ring of widt
Ec51/tc @2# inside the unit circle.~tc@1 is measured in units
of the kick period.! Then tq can be identified@1# as the in-
verse of their typical distance in the complex plane. T
picture is indeed supported by numerical quantum simu
561063-651X/97/56~6!/6237~4!/$10.00
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tions @1# for the kicked rotator.
In this work, we present analytical results for a simil

model by mapping it onto the supersymmetric nonlinears
model @12#, which is possible due to recent progress of A
land and Zirnbauer@14# for this type of system. Thes-model
in the zero-dimensional limit also applies to the case o
chaotic cavity coupled to external leads@15#. We clearly con-
firm the findings of Casatiet al. that the new time scaletq is
indeed highly relevant for the problem and, additionally, w
find at t;tq qualitatively different quantum effects for th
three symmetry classes of random matrix theory@16# that are
characterized by the indexb51 for the orthogonal case~sys-
tems with time reversal symmetry and no spin mixing!, b52
for the unitary case~broken time reversal symmetry!, and
b54 for the symplectic case~time reversal symmetry and
strong spin mixing!. This result supports the interpretatio
that the effect of weak localization~or antilocalization for
b54! can also be observed in open systems with absorpt

We consider the quantum dynamicsuc(t11)&5Suc(t)&
of a generalized random phase kicked rotator model with
time evolution operator introduced in@2,1#

Sl l̃ 5eim l^ l ue2 iV~u!u l̃ &eim l̃ , ~1!

where l , l̃ are the quantum numbers of ‘‘angular mome
tum’’ being conjugated to the angleu. As in Refs.@2,1# the l

space is finite:2N/2< l , l̃ <N/2 introducing effective ab-
sorption at the boundaries. We consider random phasem l
@17# and a quite general periodic kick potentialV(u) ~with a
finite number of harmonics!. The different symmetry
classes are encoded in the symmetries ofV(u) @18#,
i.e., V(u)5V(2u) for b51 and V(u)5V0(u)12

1(n51
3 snVn(u) for b54. Heresn are the Pauli matrices

and Vn(u) is even~or odd! for n50 ~or n51,2,3!. In the
following, we consider the phase averaged quan
P(t)5^u^0uStu0&u2&m to describe the decay of a quantu
state initially localized at the sitel 50. For short time scales
this probability decays diffusively asP(t)}1/ADt ~with dif-
fusion constantD5^V8(u)2&u@1) whereas for longer time
scales and large system size (t,N@D) quantum localization
leads to the saturationP(t)}1/j with the localization length
R6237 © 1997 The American Physical Society
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j5bD/2. Here we concentrate on the case of a system
N being much smaller thanj ~i.e., tc;N2/D!N5tH! and on
time scalest.tc .

We first present and discuss our main results before
outline some basic steps of the approach. We find that
first quantum corrections fortc,t&tH

2/3tc
1/3 can be cast in the

form

P~ t !}e2Ec,1tCbS Ec,2t
2

2N D , Ec,n5
gn

N
, ~2!

where for the 0D limit~k'N/2 or for a chaotic cavity! we
have introduced the ‘‘generalized conductance’’ moments
gn5( jTj

n , n51,2,... . Here the transmission eigenvalu
0<Tj<1 describe the effective coupling strength of the ca
ity with the boundary. For the 1D limit,g15g25p2D/2N is
~up to a numerical factor! the classical conductance from th
site 0 to the boundary. The universal functionsCb(u) have
the form ~inset of Fig. 1!

C1~u!5E
0

1

dxE
0

1

dy
2x~12x!

~12x21x2y2!2

3exp@u„2x2~12x21x2y2!…# ~3!

511u1
5

6
u21•••,

C2~u!5sinh~u!/u511
1

6
u21••• , ~4!

C4~u!5C1~2u/2!512
1

2
u1

5

24
u21••• . ~5!

For b51,2 the quantum probabilityP(t) is above its classi-
cal valuePcl(t). The criterion ln@P(tq)/Pcl(tq)#50.1 ~see@1#!
to define the quantum relaxation time scaletq leads to
tq'0.45AN/Ec,2 for b51 and tq'1.24AN/Ec,2 for b52.
The numerical factor forb51 is indeed close to 0.38 foun

FIG. 1. Logarithm ofP(t) for the three symmetry classes wit
Ec,1'0.1, N52000 and all transmission eigenvaluesTj51. The
full lines are obtained from~14! for b52 or the corresponding
integrals forb51,4. The dashed line shows the classical expon
tial decay and the two dotted lines forb51,2 correspond to Eq.~2!.
For b54, Eq. ~2! coincides with the full line. The inset shows th
functionsCb(u) given in Eqs.~3!–~5!.
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in @1#. We note that forb52 the functionC2(u) has only a
quadratic correction for smallu. The situation forb54 is
particularly intriguing because here the quantum probabi
is initially even below the classical value. The functio
C4(u) has atumin'3.03 (tq,min'2.46AN/Ec,2) its minimum
value 0.488 and it crosses the classical value 1 again
ucr'7.36 (tq,cr'3.84AN/Ec,2). It seems that the linear term
in the functionCb(u) can be viewed as a weak-localizatio
correction ~antilocalization forb54!. In Fig. 1, we also
show for the 0D case withTj51 the accurate result that i
given by more complicated integrals~see below!.

To derive these results, we have applied the supers
metric technique@12,15#, which has recently been genera
ized @14,19# to treat random phases instead of Gaussian
order. Repeating the steps described in Ref.@19#, we can
express the Laplace transformP̃(v) of P(t) as a functional
integral of the type

P̃~v!5E DQ f„Q~0!…e2L[Q] . ~6!

Here the integration is done over a field of 838 supermatri-
ces Q( l ), 2N/2< l<N/2 with the nonlinear constrain
Q251 and particular symmetries for each universality cla
@12#. f „Q(0)… is a preexponential factor that depends only
the Q field at site 0. The action in Eq.~6! has the form

L@Q#5
d

2
Str8N ln~B̂~v!1 iQ̂ !, ~7!

B̂~v!5 iL
12eiv/2Û0

11eiv/2Û0

, Û05S U0

U0
†D . ~8!

The numberd51 ~2! for b51,2 (b54) measures the spin
degeneracy and the supertrace extends over
8N-dimensional super space.Q̂ is an operator containing th
Q( l )-fields in its diagonal blocks andU0 is a matrix with
elementŝ l ue2 iV(u)u l̃ & ^ 14 . The block structure in Eq.~8!
refers to the grading for advanced and retarded Greens f
tions with the matrixL having the entries11 (21) in the
upper ~lower! diagonal block. As in@19#, we expand the
action in the limit of long wavelengths and long time scale
which givesL@Q#'LB@Q#1L1D@Q# where

L1D@Q#52
d

32 E2 N/2

N/2

dl Str~D~] lQ!214ivQL! ~9!

is the standard one-dimensionals model action. Here the
supertrace Str without subscript acts on 838 supermatrices.
The termLB@Q# which was absent in@14,19# arises from the
boundary absorption because the operatorU0 is not unitary
due to the cutoff inl space. According to this we can writ
B̂(0)5B11 iLB2 with Hermitian matricesB1 andB2 . Note
that B2 does not vanish becauseU0 is not unitary.
The boundary part of the action is then determined by
eigenvalues 0<Tj

(0)<1 of the Hermitian matrix T̂(0)

5A21/24B2A21/2 @with A5B1
21(11B2)2#. These eigenval-

ues have the meaning of transparencies of coupling chan
to the outside. Their precise distribution depends on mic
scopic details such as system size and the particular choic
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the kick potentialV(u). The eigenvectors with nonvanishin
Tj

(0) have typically a support on the sites close to the bou
ary and the related boundary conductanceg(0)5( jTj

(0)

scales like the effective bandwidth ofU0 : g(0);AD. We
have verified this behavior by a numer
cal evaluation of T̂(0) for the standard kicked rotator
Therefore we can write: LB@Q#5LB„T̂(0),Q(N/2)…
1LB„T̂(0),Q(2 N/2)… with

LB~ T̂~0!,Q!5
d

4 (
j

Str lnS 11
1

2
Tj

~0!DQD ~10!

andDQ5 1
2 (QL1LQ)21. The sum runs over all nonvan

ishing eigenvalues associated to one boundary. We note
for the S-matrix approach of Refs.@15,20# exactly the same
action is obtained whereTj

(0) are the transmission eigenva
ues of a tunnel barrier which couples a mesoscopic samp
an ideal quantum wire@20#.

The functional integral~6! corresponds to a path integr
that can be evaluated by solving a diffusion equation inQ
space@21,12,22#. Therefore we rewrite Eq.~6! as

P̃~v!5E dQ f~Q!F2~Q,N/2!, ~11!

where the functionF(Q,l ) is determined by the partial dif
ferential equation@21,12,22#

] lF~Q,l !5S 2

j
DQ1 i

d

8
v Str~QL! DF~Q,l ! ~12!

and the initial conditionF(Q,0)5exp@2LB(T̂(0),Q)#. Here
DQ denotes the Laplace operator inQ space~with the precise
notations of Ref.@23#!. The general solution of Eq.~12! for
arbitrary frequencies is an involved mathematical proble
First, we consider the solutionF0(Q,l ) for the casev50.
For this, we note that exp@2LB(T̂,Q)# as a function ofTj and
Q exactly coincides with the generating function~2.3! of
Ref. @23#, which was used to prove the equivalence of thes
model @21,12,22# and Fokker-Planck approach@24–26# for
quasi one-dimensional disordered wires. According to
argumentation presented in@23#, F0(Q,l ) is exactly given by

F0~Q,l !5E dT̂ p~ T̂,l !exp@2LB~ T̂,Q!# ~13!

where p(T̂,l ) is a probability distribution of transmissio
eigenvaluesTj , which fulfills a certain Fokker-Planck equa
tion ~known as DMPK-equation due to Dorokhov@24#, and
Mello, Pereyra, Kumar@25#! with the initial condition
p(T̂,0)5d(T̂2T̂(0)). p(T̂,l ) describes the statistical tran
port properties of a quasi-one-dimensional disordered wir
series with a tunnel barrier with transparenciesTj

(0) . At first
sight Eq.~13! seems to be more complicated due to the
creased number of integrations. However, in the meta
limit, we can expand Eq.~10! in powers ofDQ with the
self-averaging transmission momentsg1 ,g2 ,g3 ,... asprefac-
tors. Their ‘‘quantum’’ fluctuations are of order unity an
have only an effect fort*tH . Therefore, we can replacegn
-

at

to

.

e

in

-
c

by their average values and omit theT average. Thesegn

averages are in the classical limit determined by a se
differential equations that can be derived from the DMP
equation@26#. To determineF(Q,l ) for vÞ0 we use the
expression forF0(Q,l ) as an ansatz where thegn are now
parameters to be determined as a function ofv. Thev term
only modifies the equation forg1 giving g18( l )52(2/D)g1

2

2 iv and g28( l )5(4/D)(g1
222 g1g2). Omiting the details,

we mention that the explicit solutions determineF(Q,l ) and

thus provide a closed expression forP̃(v) as oneQ integral
~11!. Using the standard parametrizations forQ introduced
by Efetov @12#, we can express Eq.~11! as an integral over
two (b52) or three (b51,4) radial parameters. We ca
perform the integrations forv ~from the Fourier transform!
and for the effective variables5 Str(DQ) in a saddle point
approximation, which is justified fort@tc . Keeping the first
two terms withg1 and g2 in F(Q,l ) we obtain our main
result ~2!–~5! for the 1D case. The situation for the 0d case
is much easier, here we can simply insert the given ‘‘bou
ary’’ transmission eigenvalues and perform thev integra-
tion. For lack of space, we only state the result forb52

P~ t !'
1

t E
0

min~1,t/N!

dxS 112
t

N
22xDe2L~x!, ~14!

L~x!5(
j

lnS 11~ t/N2x!Tj

12xTj
D . ~15!

The corresponding expressions forb51,4 have a similar
structure with two integrations. The curves shown in Fig
were obtained from a numerical evaluation of these integr
They also lead to our principal result~2!–~5! if we expand
the logarithm in Eq.~15! up to second order inT. The ex-
pansion parameter here is, in principle,t/N;t/tH!1. How-
ever, one can estimate that the third order term gives a c
tribution }t3/(tctH

2 ), which has to be smaller than unit
because of the exponential in Eq.~14!. Of course the same
criterion holds for the 1D case if we restrict ourselves to
first two momentsg1 andg2 .

In summary, we have found that for open chaotic syste
the first quantum corrections to the classical relaxation p
cess appear at a quantum relaxation time scaletq;AtctH
with different effects for each universality class~Fig. 1!. This
scale is determined by the second moment of transmiss
eigenvaluesTj describing the effective coupling strength
the initial site with the boundary. It would be very interestin
to relate this finding more clearly to the physical mechani
suggested in Ref.@1#, according to whichtq is the time scale
at which the quantum discreteness of the complex eigen
ues exp(iEj2Gj / 2) of the nonunitary time evolution operato
S @2# can be resolved. We emphasize that in view of t
universals model formulation our results apply not only t
the kicked rotator model~1! but also to chaotic cavities~cor-
responding to the zero-dimensional random matrix limit! and
to quasi-one-dimensional disordered wires. In this case
should consider the time evolution of a wave packet of pla
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waves in an energy interval of size\/t, wheret is the elastic
scattering time. The typical extension of a such a wa
packet is just the mean free path, which is in any case
smallest length scale that can be resolved by the standas
model @12#.

Due to the almost identicals model action it is important
to understand the relation of our results with the approac
Ref. @10#, where mainly the limitt.tH was considered. A
recent careful analysis@27# of the saddle point approach pio
neered in Ref.@10# indeed gives for the regimetq!t!tH the
behavior lnP(t)'2(t/tc)@12t/(bgtc)# confirming Eqs.~2!–
~5! for u@1. Furthermore, fort.tH we can state that the
log-normal behavior found in@9–11# should also apply to the
averagedecay rate for the kicked rotator model. Howev
for very long time scales one should also focus on the
tribution of the decay function because for agiven sample
v.

ev

s,

s,

ys

ys

.

B

e,
e
e

of

,
-

the decay is then again exponential with a decay rate gi
by the minimalG j @1#.

Concerning the zero-dimensional limit, our result~2!, ~3!
for b51 is, in principle, also contained in the exact integ
expressions of@13#. However, since the corresponding lim
was not worked out there the time scaletq remained unde-
tected. We emphasize that here theTj are given model pa-
rameters andEc,2 might parametrically be smaller thanEc,1
if all Tj!1. We mention that very recently Savin an
Sokolov @28# independently also found the time scaletq in
the frame work of the supersymmetric approach. Their
sults, which apply for the 0D case with unitary symmet
completely agree with our findings~2! and ~14!.

The author acknowledges D. L. Shepelyansky and
Georgeot for fruitful and inspiring discussions.
,

or

.

@1# G. Casati, G. Maspero, and D. L. Shepelyansky, Phys. Re
56, R6233~1997!.

@2# F. Borgonovi, I. Guarneri, and D. L. Shepelyansky, Phys. R
A 43, 4517~1991!.

@3# Y. V. Fyodorov and H.-J. Sommers, J. Math. Phys.38, 1918
~1997!.

@4# Y. V. Fyodorov and H.-J. Sommers, Phys. Rev. Lett.76, 4709
~1996!; Y. V. Fyodorov, D. V. Savin, and H.-J. Sommer
Phys. Rev. E55, 4857~1997!.

@5# Y. V. Fyodorov, B. A. Khoruzhenko, and H.-J. Sommer
Phys. Lett. A226, 46 ~1997!.

@6# P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Ph
Rev. Lett.78, 4737~1997!.

@7# E. R. Mucciolo, R. A. Jalabert, and J.-L. Pichard, J. Ph
~France! I 7, 1267~1997!.

@8# A. Comtet and C. Texier, cond-mat/9707046~unpublished!.
@9# B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, Pis’ma Zh

Eksp. Teor. Fiz.45, 160 ~1987! @JETP Lett.45, 199 ~1987!#;
Zh. Eksp. Teor. Fiz.94, 258 ~1988! @Sov. Phys. JETP67, 795
~1988!#; I. E. Smolyarenko and B. L. Altshuler, Phys. Rev.
55, 10 451~1997!.

@10# B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B51,
5481 ~1995!; e-print cond-mat/9601045.

@11# A. D. Mirlin, Pis’ma Zh. Eksp. Teor. Fiz.62, 583 ~1995!
@JETP Lett.62, 603 ~1995!#.

@12# K. B. Efetov, Adv. Phys.32, 53 ~1983!; Supersymmetry in
Disorder and Chaos~Cambridge University Press, Cambridg
1997!.
E

.

.

.

@13# H. L. Harney, F.-M. Dittes, and A. Mu¨ller, Ann. Phys.~N.Y.!
220, 159 ~1992!.

@14# A. Altland and M. R. Zirnbauer, Phys. Rev. Lett.77, 4536
~1996!; M. R. Zirnbauer, J. Phys. A29, 7113~1996!.

@15# J. M. Verbaarschot, H. A. Weidenmu¨ller, and M. R. Zirnbauer,
Phys. Rep.129, 367 ~1985!.

@16# M. L. Mehta, Random Matrices~Academic Press, New York
1991!.

@17# In this way complications related to a finite chaos border
stable islands in phase space are avoided.

@18# Note that for the quantum kicked rotator the angleu corre-
sponds to the quasimomentum ofl .

@19# K. M. Frahm, Phys. Rev. B55, R8626~1997!.
@20# S. Iida, H. A. Weidenmu¨ller, and J. A. Zuk, Ann. Phys.~N.Y.!

200, 219 ~1990!.
@21# K. B. Efetov and A. I. Larkin, Zh. Eksp. Teor. Fiz.85, 764

~1983! @Sov. Phys. JETP58, 444 ~1983!#.
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